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Abstract

The ghost cell approaches (GCA) for handling stationary solid boundaries, regular or ir-
regular, are first investigated theoretically and numerically for the diffusion equation with
Dirichlet boundary conditions. The main conclusion of thispart of investigation is that the
approximation for the diffusion term has to be second-order accurate everywhere in order
for the numerical solution to be rigorously second-order accurate. Violating this principle,
the linear and quadratic GCAs have the following shortcomings: (1) restrictive constraints
on grid size when the viscosity is small; (2) susceptibleness to instability of a time-explicit
formulation for strongly-transient flows; (3) convergencedeterioration to zeroth order or
first order for solutions with high-frequency modes. Therefore, the widely-used linear ex-
trapolation for enforcing no-slip boundary conditions should be avoided, even for regular
solid boundaries. As a remedy, a simple method based on explicit jump approximation
(EJA) is proposed. EJA hinges on the idea that a velocity-derivative jump at the bound-
ary reduces to the value of the velocity-derivative at the fluid side because the velocity of
the stationary boundary is zero. Although the time-marching linear system of EJA is not
symmetric, it is strictly diagonal dominant with positive diagonal entries. Numerical results
show that, over a large range of viscosity and grid sizes, EJAperforms much better than
GCAs in terms of stability and accuracy. Furthermore, the second-order convergence of
EJA does not depend on viscosity and the spectrum of the solution, as those of GCAs do.
This paper is written with enough details so that one can reproduce the numerical results.
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1 Introduction

For any irregular domain with smooth boundaries, a smooth function can be ex-
tended across a boundary with a bound on the relative increase in the error norms.
This is the essential idea behind the ghost cell approach (GCA). With the ghost cell
values updated by extrapolating from inside the fluid phase,the boundary condi-
tions at the solid-fluid interface are implicitly fulfilled.This approach dates back
to Mayo [13] in 1980s and has been widely adopted by researchers; one group
of examples [18,1] concerns the Immersed Boundary (IB) method with the finite
difference formulation.

There exist numerous ways of obtaining the ghost cell values, most of them are
variants of two formulas: the linear extrapolation via image points, hereafter re-
ferred to as GC1, and the quadratic extrapolation via polynomial fitting, hereafter
referred to as GC2. Both GC1 and GC2 have been widely used in treating irregular
boundaries, see [20] and [18] for two examples and [16] for a wide perspective.

This paper considers the nonhomogeneous diffusion equation,

∂u
∂t
= ν∇2u+ f (x, t), (1)

wherex ∈ RD is the location vector,t the temporal coordinate,u = u(x, t) a con-
tinuous scalar function with its value being a constant zerowithin the solid phase,
ν the dynamic viscosity, and the forcing termf (x, t) is knowna priori. In this and
the next sections, we will focus on the one-dimensional version of (1):

∂u
∂t
= ν
∂2u
∂y2
+ f (y, t), (2)

wherey denotes the vertical coordinate. The solid-fluid interfaceis located atyB =

bh, with h being the uniform mesh spacing, as shown in Fig. 1. The regular bound-
ary case in Fig. 1 (a) can be considered as a special case of theirregular bound-
ary case in Fig. 1 (b) withb = 0. Without loss of generality, it is assumed that
b ∈

[

−1
2,

1
2

)

and the discretization ofu is cell-centered. The value ofu in the jth cell

is represented byu j, located atyj =
(

j + 1
2

)

h.

Referring to Fig. 1 (b), the image point ofy−1 with respect to the interface is located
atyimage=

(

2b+ 1
2

)

h, where a linear interpolation yieldsuimage= 2bu1+ (1−2b)u0.
GC1 sets the ghost cell value by

uGC1
−1 = 2uB − uimage. (3)

Whenb = 0 (i.e., regular boundary) anduB = 0, (3) reduces to the well-known no-
slip conditionu−1 = −u0 for regular boundaries, as shown in Fig. 1 (a). Since (3)

∗ Corresponding author (QHZhang@lbl.gov).

2



×

×

×

u−1

u0

u1

(a) Regular

×

×

×
bc

b

y

u−1

u0

u1

yimage

yB = bh

h

(b) Irregular

Fig. 1. Cells in the vicinity of the solid-fluid interface. Light gray area represents the solid
phase and white area is occupied by the fluid phase.u−1 is a boundary condition to be
specified. ‘◦′ represents the image point ofy−1.

is linear, using a higher order interpolation foruimage does not improve the overall
accuracy unless more image points are introduced.

In GC2, the ghost cell value is evaluated by fitting a quadratic polynomial near the
interface:

uGC2
−1 = ũ

(

−h
2

)

, (4)

ũ(y) =

(

y− 3
2h

) (

y− 5
2h

)

(

b− 3
2

) (

b− 5
2

)

h2
uB +

(

y− 5
2h

)

(y− bh)

h2
(

b− 3
2

) u1 −

(

y− 3
2h

)

(y− bh)

h2
(

b− 5
2

) u2,

where the irregular cell valueu0 is excluded to prevent instabilities fromb ≈ 1
2.

Taylor expansions of (3) and (4) aty0 yield

uGCk
−1 + u1 − 2u0

h2
− ∂

2u
∂y2

∣

∣

∣

∣

∣

∣

0

= TGCk ∂
k+1u
∂yk+1

∣

∣

∣

∣

∣

∣

0

+O(hk), (5)

where

TGC1 =
−1− 8b+ 4b2

4
(6a)

TGC2 =
1+ 2b

2
h (6b)

It is clear from (5) that GCk introduces error ofO(hk−1) in approximating the dif-
fusion term near the solid-fluid interface. For an explicit second-order method, one
can expect that the errors near the solid-fluid interface propagate to the interior of
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the fluid phase by numerical diffusion and the accuracy is less than second-order, at
least in the∞-norm sense. However, explicit treatment of the diffusion term incurs
a restrictive time step constraint∆t ∼ O(h2) and the diffusion term is usually han-
dled implicitly to avoid this constraint. This immediatelyraises a question on how
a solution of (1) is influenced by perturbations of codimension one.

For Poisson’s equation, it is well-known that the perturbations from GCA are neg-
ligible for solvers with second-order convergence. By examining the error equation
for Poisson’s equation, Johansen and Colella [6] showed that although GC2 gen-
erates a first-order truncation error on the boundary, the solution error induced is
third-order; thus the second-order convergence rate is notinfluenced. McCorquo-
dale et al. [14] also confirmed that both GC1 and GC2 are second-order accurate
and even the solution gradient of GC2 is second-order accurate. As for the diffusion
equation, Gibou and Fedkiw [4] claimed that a cubic extrapolation yields fourth-
order accuracy of the solution, their supporting numericaltests only consisting of
single Fourier modes with exponentially decaying amplitudes. However, we believe
that effects of boundary perturbations on the diffusion equation is very different
from those on Poisson’s equation. As will be proved in Section 2,a diffusion equa-
tion solver has to approximate the diffusion term to kth order accuracy every-
where inside the domain in order to be rigorouslykth order accurate. This
requires that the extrapolation near the boundary be(k+ 2)th order accurate.
Although sometimes a lower order extrapolation may achievesuper-convergence
for solutions with a finite spectrum, this super-convergence does not apply to solu-
tions with infinite spectrum, especially when viscosity is small.

In particular, GC1 and GC2 has asymptotic convergence of second- and third-order
for solutions with low-frequency modes; but they are only zeroth-order and first-
order accurate for some test cases in Section 4. Even when they do exhibit second-
order convergence, their errors are much larger than those of the proposed explicit
jump approximation (EJA) method in a wide range of grid sizes, as will be shown
in Section 4.3. Furthermore, the asymptotic convergence ofGCA requires the grid
size to be smaller than a ‘critical’ grid size, which can be prohibitively small as
viscosity is reduced. This coupling of convergence rate to viscosity is undesirable.
In addition to the accuracy issues, instability of an explicit formulation of GCA is
also reported in Section 4.2.

A straightforward way to improve the accuracy of GCA in one-dimensional space is
to fit a cubic or even higher-order polynomial near the solid-fluid interface so that
the diffusion term is uniformly approximated to second order everywhere inside
the fluid phase. However, in multi-dimensional spaces, extrapolations from differ-
ent dimensions yield different values, as shown in Fig. 4. There are three ways
to address this issue: (1) using a linear combination of these conflicting values
[1]; (2) storingD ghost values at each ghost cell; (3) resort to multi-dimensional
polynomial-based interpolation. In the last choice, the local qth order polynomial
must have

(

D+q
D

)

terms including all the coordinates and their cross terms topreserve
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(q−1)th order-of-accuracy of the Laplacian term. For example,a fourth-order solver
in three-dimensional space involves fitting a fifth-order polynomial, requiring solv-
ing at least a 56× 56 linear system for each ghost cell value.

An alternative method to overcome the above two difficulties is to treatu as a func-
tion with discontinuities at the solid-fluid interface and incorporate the jump con-
ditions into the discretization stencils. The Immersed Interface Method (IIM) [10]
is an example. Although the IIM was originally designed for elliptic problems, it
has been extended to Stokes flows [11], Poisson’s equation [3], parabolic equations
[21,5], and incompressible Navier-Stokes equations [12,9]. Applications to rigid,
flexible and moving boundaries [23,8] were also reported. One difficulty of the
IIM, however, is the lack of jump conditions for high-order derivatives. To avoid
this challenge, Zhong [29] and Zhou [30] have proposed theirown high-order meth-
ods for solving elliptic equations by using two jump conditions for the value of the
variable and its first-order derivative. Mathematically, these methods are equivalent
to explicitly approximating high-order derivatives by either Taylor expansion or lo-
cal polynomial fitting. However, in the case of a rigid solid phase, even the jump
conditions on the first-order derivatives are unavailable.

Fortunately, the velocity and its derivatives for stationary solid-fluid interface are all
zero. Thus, the velocity-derivative jumps reduce to the values of velocity-derivatives
on the fluid side. This fact leads to the explicit jump approximation (EJA) method
formulated in Section 3. Unlike the GCA, the extrapolation target of EJA is the
interface, not the ghost cell. As will be shown in Fig. 4 in Section 3.2, the extrap-
olation of EJA is essentially one-dimensional because intersections of the interface
to different directions are distinct. This permits a simple generalization to multi-
dimensional spaces in a dimension-by-dimension way.

Similar to the IIM, EJA is based on the generalized Taylor expansion and discretiza-
tion stencils are locally modified near the interface; unlike IIM, EJA approximates
the jump conditions explicitly by extrapolation instead ofderiving it from phys-
ical constraints. Also, the jumps in EJA are with respect to the coordinates, not
with respect to the normal direction of the interface. Theseresult in a simpler for-
mulation without requiring jump-condition derivation andlocal-global coordinate
transformations. Roughly EJA can be viewed as an IIM specialized for stationary
solid-fluid interfaces.

The rest of this paper is organized as follows. Section 2 answers the question on
how a solution of (1) is influenced by perturbations near the solid-fluid interface,
motivating the development of EJA in Section 3, where the time-marching linear
system of EJA is shown to be strictly diagonally dominant. Section 4 evaluates
the stability and accuracy of EJA and GCA via extensive testsin one-, two- and
three- dimensional spaces. Finally, Section 5 outlines future work for coupling EJA
to the Polygonal Area Mapping method (PAM) [26] and HyPAM [28] to form a
three-phase model including gas, fluid and solid.

5



2 An Error Analysis

Consider the one-dimensional homogeneous diffusion equation

∂u
∂t
= ν
∂2u
∂y2
, (u, t) ∈ [0, 1] × [0,∞) (7)

with initial and boundary conditions as

u(y, 0) = ϕ(y), u(0, t) = u(1, t) = 0. (8)

Handling the solid-fluid interface aty = 0 by GCA adds into (7) a nonhomogeneous
term that is zero everywhere except near the interface:

∂u
∂t
= ν
∂2u
∂y2
+ T(y, t), (9)

whereT(y, t) can be deduced from (5) as

T(y, t) ≈ T(t) =















νTGCk(t) u(k+1)
∣

∣

∣ h
2

y ∈ [0, h]

0 y ∈ (h, 1]
, (10)

with u(k+1)
∣

∣

∣ h
2

as the value of the (k + 1)th spatial partial derivative ath2. T(y, t) is

assumed to be independent ofy within the computational cell abutting the solid-
fluid interface.

In the following we shall derive the exact solutions of the above homogeneous
and nonhomogeneous problems; their difference yields the solution error caused
by T(y, t). The derivation can also be generalized to diffusion equations with Robin
boundary conditions [2].

If x andt are separable, the solution of (7) and (8) can be derived as

u(y, t) =
∞
∑

m=1

ϕmeλmνt sin(mπy), (11)

whereλm = −m2π2 is themth eigenvalue of the second-order spatial derivative and

ϕm = 2
∫ 1

0
ϕ(z) sin(mπz) dz. (12)

To accommodate the nonhomogeneous term, we seek a solution of (9) in the form

u(x, t) =
∞
∑

m=1

um(t) sin(mπy), (13)
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by setting

Tm(t) = 2
∫ 1

0
T(z, t) sin(mπz) dz

= 2νTGCk u(k+1)
∣

∣

∣ h
2

∫ h

0
sin(mπz) dz

= 4νTGCk u(k+1)
∣

∣

∣ h
2

1
mπ

sin2

(

mπh
2

)

, (14)

so that

T(y, t) =
∞
∑

m=1

Tm(t) sin(mπy). (15)

Substitution of (15) and (13) into (9) yields a series of initial value problems, from
which the solution of (9) can be obtained as

u(y, t) =
∞
∑

m=1

ϕmeλmνt sin(mπy) + E, (16)

where the contribution of the nonhomogeneous term is

E(y, t) =
∞
∑

m=1

(∫ t

0
eλmν(t−s)Tm(s) ds

)

sin(mπy). (17)

Since (11) and (16) are solutions to (7) and (9), respectively, (17) is indeed caused
by the leading truncation error of GCA.

Substituting (14) into (17) yields

E(y, t) =
∞
∑

m=1

(

βGCk
m

sin(mπy)
mπ

∫ t

0
νeλmν(t−s) u(k+1)

∣

∣

∣ h
2

ds

)

, (18)

whereβGCk
m = O(hk−1). In particular, ifb = 0 in (6), then

βGC1
m = − sin2

(

mπh
2

)

; (19a)

βGC2
m = 2hsin2

(

mπh
2

)

. (19b)

The integral in (18) represents the coupling of perturbations from GCA and the
temporal error accumulation. Becauseu(k+1)

∣

∣

∣ h
2

ds is independent of the wave num-

berm, the summation with respect tom in general does not cancel. This nonlinear
coupling of time and spatial Fourier modes accounts for the subtle difference be-
tween Poisson’s equation and the diffusion equation on how the solution reacts to
the perturbations at the boundary.
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Based on (18) and (19), the following can also be deduced:

(I) For a single Fourier modem, giveny, t, GC1 and GC2 are asymptotically
second-order and third-order accurate, respectively, i.e.,

h→ 0⇒














βGC1
m ∼ O(h2)

βGC2
m ∼ O(h3)

⇒














EGC1
m ∼ O(h2)

EGC2
m ∼ O(h3)

. (20)

(II) Let the solution (11) have a finite number of Fourier modes andmmax be the
largest wave number. Define a critical grid size as

hcrit =
2
πmmax

. (21)

Within the range of grid sizes such thath > hcrit , GC1 and GC2 are only
zeroth-order and first-order accurate, respectively. Depending on the spec-
trum of the solution,hcrit might be small and the range of lower-order con-
vergence is then large.

(III) In practice, one often observes second-order convergence for GC1 and GC2
in the numerical tests of the diffusion equation because either the solution
contains only low frequency modes (e.g. [4]) or high-frequency modes are
quickly damped out. The ‘damping capacity’ of the physical system relates
to viscosity: the higher the viscosity, the faster high frequency modes are
damped. When viscosity is very small, high-frequency errors persist due to
slow damping. For GC1 and GC2, their second-order convergence rates thus
depend on a large viscosity to damp out their low-order truncation errors, see
also the argument after (38) and (39) for a precise explanation. As another
way to understand this, lett′ = νt, (7) can be viewed as another heat equation
with a changed time variable and unit viscosity; a smallν effectively changes
a transient solution int′ to a steady solution int.

(IV) Due to the presence of the forcing termf (y, t), the nonhomogeneous diffu-
sion equation (1) might have high-frequency modes persisting (or even in-
creasing) over time. Examples include the pressure-drivensteady flow and
impinging jet on a solid-fluid interface, in both scenarios the pressure gra-
dient and the advection term serve as the combined forcing term. Therefore,
coupling convergence rate to viscosity has a negative impact on the solution
accuracy of many practical applications because high-frequency modes do
not alwaysdie out.

(V) If the diffusion term is approximated to second-order near the boundary, then
E ∼ O

(

h2 sin2(mπh
2 )

)

and the second-order convergence rate does not depend
on the spectrum of the solution. This is the case with cubic GCA and EJA.

Numerical experiments in Section 4 will confirm these remarks. Together with the
instability of time-explicit GCA shown in Section 4.2, theymotivate EJA formu-
lated in the next section.
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3 The Explicit Jump Approximation Method

In this section, the EJA method is fully detailed for the nonhomogeneous diffu-
sion equation (1) with irregular solid-fluid interfaces. Within its framework, simply
changing the jump correction form also implements GCA. It isimportant to point
out that many projection methods for the Navier-Stokes equations use this proce-
dure to obtain intermediate results. Thus, the algorithm described here is not only
pertinent to the diffusion equation, but also applicable to a wider context.

3.1 Mathematical foundation

Like the IIM, the theoretical foundation of the EJA method isthe generalized Taylor
expansion, which has already been proved in literature [22,24].

Theorem 1 (Generalized Taylor Expansion)Assume function g(y) has m discon-
tinuity points of the first kind at y1, y2, · · · , ym in (y0, ym+1), y0 < y1 < · · · < ym+1 and
g(y) ∈ C∞(y0, y1) ∪ (y1, y2) ∪ · · · ∪ (ym, ym+1), as shown in Fig. 2. g(y) can be either
continuous or discontinuous at y0 and ym+1. Let

[[

g(n)(yi)
]]

= g(n)(y+i ) − g(n)(y−i ) (22)

denote the jump of the nth derivative where n= 0, 1, 2, · · · and i= 1, 2, · · · ,m, then

g(y−m+1) =
∞
∑

n=0

g(n)(y+0)

n!
(ym+1 − y0)

n +

m
∑

i=1

∞
∑

n=0

[[

g(n)(yi)
]]

n!
(ym+1 − yi)

n, (23a)

g(y+0 ) =
∞
∑

n=0

g(n)(y−m+1)

n!
(y0 − ym+1)

n −
m

∑

i=1

∞
∑

n=0

[[

g(n)(yi)
]]

n!
(y0 − yi)

n. (23b)

Theorem 1 gives rise to a generalized finite differencing that can be applied to
functions with discontinuities.

Proposition 2 (Generalized Central Finite Difference) Let yj+1−yj = yj−yj−1 =

h > 0 and yj−1 < α < yj ≤ β < yj+1. u(y) ∈ C∞(yj−1, α) ∪ (α, β) ∪ (β, yj+1). Then

du(y−j )

dy
=

u(y−j+1) − u(y+j−1)

2h

− 1
2h

















2
∑

n=0

[[

u(n)(α)
]]

n!
(yj−1 − α)n +

2
∑

n=0

[[

u(n)(β)
]]

n!
(yj+1 − β)n

















+O(h2),

(24)
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+ + + + +
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· · ·

Fig. 2. A functiong(y) with finite discontinuities.g(y) is continuous aty1 while its deriva-
tives are not. In contrast,g(x) and all its derivatives are discontinuous aty2.

d2u(y−j )

dy2
=

u(y−j+1) + u(y+j−1) − 2u(yj)

h2

+
1
h2

















3
∑

n=0

[[

u(n)(α)
]]

n!
(yj−1 − α)n −

3
∑

n=0

[[

u(n)(β)
]]

n!
(yj+1 − β)n

















+O(h2).

(25)

PROOF. Using (23) to expandu(yj+1) andu(yj−1) at y−j yields (24) and (25).

According to Proposition 2, when there is only one jump betweenyj−1 andyj+1, the
location of the jump has to be compared withyj in order to select the proper form
of a velocity derivative jump. Thus, for the configuration inFig. 1 (b), (25) reduces
to

∂2u
∂y2

∣

∣

∣

∣

∣

∣

0

=
u1 + u−1 − 2u0

h2
+

1
h2

















3
∑

n=0

[[

u(n)(yB)
]]

n!
(y−1 − yB)n

















+O(h2), (26)

whereyB is the location of the interface betweeny−1 andy0, assuming no interface
exists betweeny0 andy1.

Identifyingu as velocity for physical variable, the continuity ofu implies

[[u]] B = 0⇒ u(y+B) = u(y−B) = uB,

where the speed of the solid phase,uB, is assumed to be identically zero, which
further implies that the velocity derivatives of the solid phase are zero. Hence, for
n ≥ 1,

[[

u(n)
]]

B
= u(n)(y+B) − u(n)(y−B) =















u(n)(y+B), y+B is in fluid

−u(n)(y−B), y−B is in fluid
.

In other words, jumps of the derivatives are reduced to the derivatives at the fluid
side, due to the assumption ofu being zero in the solid phase and continuous in the
whole domain.

10



In Appendix the jumps of derivatives in (25) are approximated so that the second
order accuracy is preserved. Utilizing the results there, (25) can be written as

h2
d2u(y−j )

dy2
= u j+1 + u j−1 − 2u j + VEJA(u j, u j+s, u j+2s)

T +O(h4), (27)

wheres = 1 if the solid-fluid interface lies at the negative side of thefluid; other-
wises = −1.

VEJA(ǫ) = (ǫ − 1)

(

3
ǫ
, − 3
ǫ + 1

,
1
ǫ + 2

)

, (28)

whereǫ is the normalized distance from the cell center to the solid-fluid interface,
ǫ = 1

2 − b in Fig. 1 (b). In the next section, these definitions are generalized to
multi-dimensional space as in (33) and (34) withǫ = min(ǫ+i,d, ǫ

−
i,d).

Approximation of the second order derivative by GCA can be put into similar
forms:

h2
d2u(y−j )

dy2
= u j+1 + u j−1 − 2u j + VGCk(u j , u j+s, u j+2s)

T +O(hk+1), (29)

where

VGC1(ǫ) =
(

−2ǫ, 2ǫ − 1, 0
)

; (30a)

VGC2(ǫ) =

(

0, 3
ǫ − 1
ǫ + 1

, −2
ǫ − 1
ǫ + 2

)

. (30b)

3.2 Laplacian discretization

Hereafter we expand our notation toD-dimensional space. For exposition conve-
nience, the computational domain is assumed to haveN cells in each dimension
with uniform grid sizeh. A cell is identified by a multi-indexi = (i0, i1, · · · , iD−1) ∈
Z

D. A bijective mappingM : [0,N − 1]D → [0,ND − 1] sends a multi-index to a
scalar index:

M(i) =
D−1
∑

d=0

Nd id. (31)

The stencil to discretize the Laplacian operator is a set of 2D + 1 multi-indices:

S(i) =
{

i + aed : a = −1, 0, 1; d = 0, 1, · · · ,D − 1
}

, (32)

where thedth component ofed is one and all other components are 0.

Let B denote the compact set representing the solid phase, andxi =
(

i + 1
2

)

h the
center of celli, cell i is
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(b) a triangle solid inside the domain.

Fig. 3. Cell classification. Shaded area represents the solid phase. A solid cell marked by
‘◦’ has its center inside the solid; an interface cell marked by‘∗’ is close to the solid-fluid
interface; a fluid cell marked by ‘+’ does not need jump correction. To capture the geometry,
each interface cell also has a labeling vectorsi indicating the orientation of the nearby
solid and another pair of vectorsǫ±i recording the normalized distance from its center to the
interface, as shown in Fig. 4.

b

u

bc

bc

bc

ut ut utr

hǫ−
i,1

hǫ−
i
′,0

i
′

i

Fig. 4. Capturing geometry of interface cells for Laplaciandiscretization. The thick solid
line segments represent the distances between the cell center and the interface along a
certain axis in celli and i′. Intersecting the solid-fluid interface to dotted lines yield the
sites of extrapolation targets, represented by ‘•’s and ‘N’s. ‘◦’s and ‘△’s represent physi-
cal quantities involved in approximating

[[

∂nu
∂yn

]]

and
[[

∂nu
∂xn

]]

at these extrapolation targets,
respectively. The fact of ‘•’s and ‘N’s being distinct enables EJA to be locally one-dimen-
sional. In contrast, one-dimensional GCA extrapolation will yield conflicting values at the
location represented by ‘�’.

• afluid cell iff ∀ j ∈ S(i), x j < B;
• an interface celliff xi < B, but∃ j ∈ S(i), x j ∈ B;
• asolid cell iff xi ∈ B.

This classification is illustrated in Fig. 3. Discretizing the Laplacian operator in

12



the interface cells has to incorporate the jump conditions,which necessitate the
definition of a pair of vectorsǫ±i , whosedth components are the normalized distance
between the cell center and the boundary ofB along thedth axis:

ǫ±i,d =















+∞, if
{

xi ± ched : c ∈ R+
}

∩ B = ∅
inf

{

c ∈ R+ : xi ± ched ∈ B
}

, otherwise
, (33)

and a sign vectorsi whosedth component is

si,d =















1, if ǫ−i,d ≤ ǫ+i,d
−1, if ǫ+i,d < ǫ

−
i,d

. (34)

As shown in Fig. 4,si,d indicates the relative orientation of the center of celli and
the nearby solid along thedth axis whileǫ±i,d stores the normalized distances. For
example, celli in Fig. 4 hasǫ+i,1 = +∞, ǫ−i,1 < 1, andsi,1 = 1; similarly, cell i′ has
ǫ+i′,0 = +∞, ǫ−i′,0 < 1, andsi′,0 = 1.

Starting from the geometry information as above, the Laplacian operator can be
discretized as

h2∇2U = ALU + Φ +O(h4), (35)

whereAL ∈ RND×ND
includes the jump corrections andΦ ∈ RND

contains the do-
main boundary conditions.U ∈ RND

is the unknown vector ofu at cell centers
ordered by (31).

Because of the absence of cross differentiation terms, the jump corrections can be
applied dimension by dimension. Algorithm 1 formalizes this idea by assembling
AL andΦ from the geometrical information and boundary conditions.In this al-
gorithm, each cell in the domain corresponds to one row inAL. Lines 17-22 add
the jump correction (28) or (30) into the standard Laplaciandiscretization in lines
9-16. Lines 17-22 operate only on interface cells while lines 9-16 operate on both
interface cells and fluid cells. As for the solid cells, theircorresponding rows are
left as zeros to reduce the number of elements to be stored in the sparse matrixAL,
which is justified by the assumption that the value of the unknown and its Laplacian
is identically zero in the solid phase.

Proposition 3 For an irregular solid-fluid interface, the matrixAL produced by
EJA in Algorithm 1 is not symmetric but diagonally dominant.

PROOF. The asymmetry ofAL follows from the one-sidedness of the jump cor-
rection form (28). In Algorithm 1, a solid cell results in a zero row and a fluid
cell a row with−2D on the diagonal and 2D 1’s on other non-diagonal columns.
As for an interface cell,ǫ ∈ (0, 1) for somed. Since the jump corrections are ap-
plied dimension by dimension, it suffices to show that the coefficient ofu j in (28)
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Input : B: aD-dimensional compact set representing the solid phase;
N: number of cells in each dimension;
h: grid size;
ǫmin: a small number for controlling the condition number ofAL;
M: a bijective mapping from multi-indices to scalar indices;
u∂Ω(x) : boundary condition at thedomain boundary;

Output : AL andΦ : h2∇2U = ALU + Φ +O(h4).

AL ← 0ND×ND
, Φ← 0ND

1

foreach cell i inside the domaindo2

if x i =
(

i + 1
2

)

h < B then3

computeǫ±i andsi using (33) and (34)4

if min±,d ǫ±i,d < ǫmin then5

continue6

end7

for d = 0, 1, · · · ,D − 1 do8

AM(i),M(i) ← AM(i),M(i) − 29

foreach j = i ± ed do10

if j is inside the domainthen11

AM(i),M( j) ← AM(i),M( j) + 112

else13

ΦM( j) ← ΦM( j) + u∂Ω(x j)14

end15

end16

ǫ ← min
(

ǫ+i,d, ǫ
−
i,d

)

17

if ǫ < 1 and max
(

ǫ+i,d, ǫ
−
i,d

)

≥ 2 then18




































AL
M(i),M(i)

AL
M(i),M(i+si,ded)

AL
M(i),M(i+2si,ded)





































T

←





































AL
M(i),M(i)

AL
M(i),M(i+si,ded)

AL
M(i),M(i+2si,ded)





































T

+ VEJA(ǫ)

19

else if ǫ < 1 then20

use a smaller stencil out of the available data21

end22

end23

end24

end25

Algorithm 1 : Discretizing Laplacian operator by the EJA method.VEJA is
defined in (28). Alternatively, one can replaceVEJA with VGCk in (30) for a
GCA discretization.AL

m1,m2
refers to the element ofAL at them1th row and

m2th column. Similarly,Φm1 refers to them1th element ofΦ.

14



is dominant:
∣

∣

∣

∣

∣

2+
3(1− ǫ)
ǫ

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

1+
3(1− ǫ)
ǫ + 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1− ǫ
2+ ǫ

∣

∣

∣

∣

∣

+ 1,

which simplifies to (1− ǫ)(6+ 2ǫ − ǫ2) > 0.

When ǫ ≈ 0, the first jump correction term is very large and consequently AL

might have a very large condition number. One possible solution is to shift the
jump corrections away from the boundary to avoid large condition number ofAL.
However, this method destroys the diagonal dominance ofAL and increases the
width of the jump correction stencil. Numerical experiments such as the 2-D sphere
test in Section 4 show that this method can reduce the convergence rate of EJA by
up to 0.8. Consequently, it is not adopted in Algorithm 1; instead, if the distance
from an interface cell center to the solid-fluid interface isless thanǫminh, we simply
treat the interface cell as a solid cell, as shown in lines 5-7in Algorithm 1. Using
ǫmin = 10−4, the second order convergence rate of EJA is not influenced for all tests
in Section 4.

Algorithm 1 is general in the sense that replacingVEJA with VGCk recovers atime-
implicit GCA discretization that stores multiple ghost values in a single ghost cell.
Since this yields the best accuracy of GCA and encourages module reuse, the results
of GCA in Section 4 are also obtained through Algorithm 1.

To preserve the symmetry ofAL, another type oftime-explicitGCA formulation
uses the standard Laplacian discretization without jump corrections and incorpo-
rates the effect of solid phase into the discretization by adding toΦ the ghost cell
valuesuGCk

−1 (tn+1) as defined in either (3) or (4). However, as is obvious in Section
3.3, when the integral effect ofΦ is approximated,uGCk

−1 (tn+1), the ghost value at
the end of the time step, is needed whereas this formulation can only giveuGCk

−1 (tn),
the ghost value at the beginning of the time step, because thesolution attn+1 is not
available for extrapolation yet. An ad hoc workaround sets

uGCk
−1 (tn+1) = uGCk

−1 (tn). (36)

We shall denote this time-explicit formulation of GCA by ‘GCkE’ to distinguish it
from the time-implicit formulation of GCA defined by (29) and(30). At first sight
the symmetry ofAL is attractive because the time-marching matricesB(r1) and
B(r2) in (44) are symmetric positive-definite. However, as will be demonstrated in
Section 4.2, this formulation is susceptible to instabilities, especially in the GC1E
case.
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3.3 Time Integration

Algorithm 1 transforms (1) into an ODE system,

dU(t)
dt
= AU(t) + Ψ(t), (37)

whereA = ν

h2 AL andΨ(t) = f (t) + ν

h2Φ(t). It is well-known that (37) satisfies the
following recurrence relation

U(tn+1) = exp(∆tA)U(tn) +
∫ tn+1

tn

exp
(

(tn+1 − s)A
)

Ψ(s) ds. (38)

For the standard 3D Laplacian stencil, the eigenvalues of∆tA are

λ∆tA = −
ν∆t
h2

D−1
∑

d=0

sin2 ζd

2
, (39)

whereζd ∈ (0, π). In the asymptotic range ofh→ 0, λ∆tA ≪ 0, and the truncation
error of discretizing the diffusion term are damped very quickly through exp(∆tA)
in (38). However, whenν is very small, so are the absolute values ofλ∆tA. Conse-
quently, the damping of truncation errors takes a much longer time. This argument
on the difference system (37) formalizes remark (III) in Section 2.

For time integration, a family of widely-used methods is based on the Padé approx-
imation of the exponential function in the RHS of (38). The well-known Crank-
Nicolson method (C-N) is such an example. However, since C-Nhas a symbol that
tends asymptotically to -1, it is only neutrally stable and the numerical solution
exhibits oscillatory behaviors for discontinuities in initial and boundary conditions
[7]. McCorquodale et al. [15] showed the instability of C-N by a moving bound-
ary calculation. Section 4.2 shows that C-N coupled with GCkE is not stable for a
strongly transient flow. One reason of this instability is that C-N does not effectively
damp out the errors when the grid size is small.

In contrast, the method proposed by Twizell, Gumel, and Arigu (TGA) [19] is L0-
stable, i.e., its symbol tends asymptotically to zero. It isbased on a (2,1) Padé
approximation of the exponential function

exp(∆tA) = B−1(r1)B−1(r2)B(α − 1)+O(∆t3), (40)

where
B(χ) = I − χ∆tA, (41)

r1 =
α − (α2 − 4α + 2)1/2

2
, r2 =

α + (α2 − 4α + 2)1/2

2
, (42)

andα is in the range of
(

1
2, 2−

√
2
)

. This choice ofα ensures second-order accu-
racy,L0 stability and the use of only real arithmetic. In practice,α is chosen to be
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as large as possible to minimize the truncation error. In this work,α = 0.58 is used
for TGA. Note that settingα = 0.5 reduces TGA to C-N. In this work, C-N is only
used in Section 4.2 to demonstrate the instability of time-explicit GCA; elsewhere
TGA is always used.

Approximating the integral in the RHS of (38) by a trapezoidal rule [17,19]:
∫ tn+1

tn

exp
(

(tn+1−s)A
)

Ψ(s) ds=
∆t
2

B−1(r1)B−1(r2)
(

Ψ(tn)+B(2α−1)Ψ(tn+1)
)

+O(∆t3),

(43)
the ODE (37) can be solved by

B(r2)B(r1)U
n+1 = B(α − 1)Un +

∆t
2

(

Ψ(tn) + B(2α − 1)Ψ(tn+1)
)

. (44)

At each time step, advancing (37) requires solving two linear systems to ensureL0

stability. It is clear from (38), (40), and (43) that TGA is second-order accurate in
time.

Proposition 4 For EJA,B(χ) with χ ≥ 0 is strictly diagonally dominant for both
regular and irregular solid-fluid interfaces.

PROOF. The regular case holds because ofχ ≥ 0, ν > 0, the definition (41), and
the fact thatAL becomes the standard discretization with the diagonal entries as
−2D. The irregular case follows from Proposition 3.

By the Gershgorin circle theorem, a strictly diagonally dominant matrix is non-
singular. Furthermore, since all the diagonal entries ofB(r1) andB(r2) are positive,
the real parts of the eigenvalues of them are non-negative.

3.4 Solution Procedure

In summary, EJA solves the diffusion equation (1) withstationarysolid-fluid inter-
face as follows:

Step 1. assembleAL by Algorithm 1 from the geometry of the solid phase;
Step 2. set initial conditionU(t0);
Step 3. computeΦ(t), f (t) to evaluate the RHS of (44);
Step 4. solve the two linear systems in (44) to advance the solution;
Step 5. repeat Step 3 and Step 4 until the final timete is reached.

The solid-fluid interface being stationary implies thatAL is time-independent and
hence should be assembled before the time loop; in contrast,Φ is time-dependent
and should be updated at each time step.
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4 Numerical Experiments

In a computational domain [0, 1]D, the diffusion equation (1) is numerically solved
following the procedures outlined in Section 3.4 withΨ(t) and the initial condition
u(x, t0) set by exact solutions. As discussed in Section 3.2, the boundary condition
is also set by exact solutions through the assembling ofΦ in Algorithm 1. The jump
conditions at the solid-fluid interface are fulfilled differently by EJA and GCAs, as
formulated in Section 3. Comparing these methods on this particular issue is exactly
the main purpose of this section.

Hundreds of test cases are performed on successively refineduniform grids with
varying viscosity log10(1/ν) = 0, 1, 2, 3, 4, 5, 6. The number of cells along each
dimension isN = 10, 20, 40, 80, 160 in 1-D and 2-D tests andN = 8, 16, 32 in 3-D
tests. Spatial and temporal grids areh = 1

N , ∆t = 1
5N . The initial timet0 = 20 and

the final timete = 21.

The convergence rate is defined as

O = log2

‖E(N)‖
‖E(2N)‖ , (45)

whereE(N) denotes the error vector between the numerical results andthe exact
solution at the end of the calculationte. The error ratios of GC1 and GC2 to EJA is
measured by

RGCk
1 = log10

‖E‖GCk
1

‖E‖EJA
1

, RGCk
∞ = log10

‖E‖GCk
∞

‖E‖EJA
∞
. (46)

They also indicates the order-of-magnitude by which EJA is more accurate than a
GCA.

4.1 Setup

Numerical tests are performed in one-, two- and three-dimensional spaces. The
setup of one dimensional tests is shown in Fig. 1 (b). For two-dimensional tests,
one setup is the simple slope shown in Fig. 3 (a) and the other is the circular
shape shown in Fig. 5 (a). In the three-dimensional tests, the solid phase is a sphere
{

x :
√

x · x ≤ π5
}

. Cell classification on a 53 grids for this setup is shown in Fig. 5
(b).

As explained in Section 2, single-Fourier-mode solutions are insufficient for exam-
ining the converging behavior of GCA, thus we choose exponential function forms
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(a) 10× 10 grids. (b) 5× 5× 5 grids.

Fig. 5. Spherical setup for 2D and 3D tests. TheD-balls are centered at the origin with a
radius asπ5. The circular curve in (a) represents the fluid-solid interface. The solid cells are
marked by ‘◦’ and the interface cells by ’∗’. Two solid cells within each other’s stencils are
connected with solid line segments; two interface cells with dashdot segments; an interface
cell and a solid cell with dotted segments.

as exact solutions. For 1-D tests, the exact solution is,

u(y, t) =



















exp
(

a(y− yB)(1+ ct)
)

− 1 y ≥ yB

0 y < yB

. (47)

The 2-D slope tests have the exact solution as

u(x, y, t) =



















x′ exp
(

a(1+ ct)y′
)

− x′ y′ ≥ 0

0 y′ ≤ 0
, (48)

where the coordinates (x′, y′) relate to the original coordinates (x, y) as





















x′

y′





















=





















cosθ sinθ

− sinθ cosθ









































x− xs

y





















, (49)

with xs =
π
10 andθ = π6 as shown in Fig. 3 (a).

The exact solution of the 2-D and 3-D sphere tests is

u(x, t) =



















exp
(

a(1+ ct)
(

x · x − r2
)

)

− 1, x · x > r2

0 x · x ≤ r2
, (50)

with r = π
5. The forcing terms for the above exact solutions can be easily derived

from the governing equation (1).
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Fig. 6. Plots of (47) witha = 0.5 andyB = 0. The horizontal and vertical axis arey
andu, respectively. The solid, dotted and dashed lines corresponds tot = 20, 20.5, 21.0,
respectively.

In Fig. 6, (47) is plotted witha = 0.5, yB = 0, andc = 1, 0.01 at three time in-
stances. Asc increases, the time scale of the flow decreases and the flow becomes
more transient.c = 1 is used in Section 4.2 to show that time-explicit GCA might
be unstable for strongly transient flows. In Section 4.3 and Section 4.4, when com-
paring the accuracies of EJA and GCA, a small valuec = 0.01 is chosen for all tests
to make the temporal change of the flow slow so that the errors come mainly from
discretizing the spatial diffusion term. In all testsa = 0.5 is fixed. These parameters
are carefully chosen to make both the velocity scale and the length scale unit size
so that a Reynolds number can be conveniently defined as

Re=
1
ν
. (51)

4.2 Instability of time-explicit GCA

When (36) is used in the time-explicit GCA, a temporal error of O(∆t2) in addition
to the spatial error is introduced into the solver. Althougheach of them is of a lower
dimension, when coupled together, they can cause instability for strongly transient
flows.

In Table 1, it is shown that both GC1 and GC2 are unstable for the transient flow
case withc = 1 if time discretization uses C-N. When C-N is replaced by TGAin
Table 2, GC2 is able to generate stable solutions while GC1 isstill unstable.

The symmetry of the linear solver is often considered as an advantage of the time-
explicit GCA, however, this might make the solver susceptible to instabilities for
transient flows. Thus, a more sophisticated approximation for the ghost cell value
at the next time step is needed in order to simultaneously retain stability and the
symmetry of the linear solver. Hereafter only TGA is used in time integration.

20



Table 1
Error norms of 1-D tests withb = 0, ν = 1, c = 1 and Crank-Nicolson (α = 0.5).

Method ‖E(10)‖1 O1 ‖E(20)‖1 O1 ‖E(40)‖1 O1 ‖E(80)‖1 O1 ‖E(160)‖1
GC1E 3.95e+03 -30.98 8.37e+12 -117 1.49e+48 -259 1.06e+126 -552 1.65e+292

GC2E 3.95e+03 2.35 7.75e+02 2.20 1.69e+02 -45 4.71e+16 -406 7.50e+138

EJA 4.15e+03 2.38 7.95e+02 2.21 1.72e+02 2.11 3.97e+01 2.06 9.54e+00

Method ‖E(10)‖∞ O∞ ‖E(20)‖∞ O∞ ‖E(40)‖∞ O∞ ‖E(80)‖∞ O∞ ‖E(160)‖∞
GC1E 6.62e+03 -34.20 1.31e+14 -118 3.53e+49 -259 3.75e+127 -553 8.55e+293

GC2E 6.62e+03 2.34 1.31e+03 2.19 2.88e+02 -53 2.83e+18 -406 5.04e+140

EJA 6.69e+03 2.35 1.32e+03 2.19 2.89e+02 2.10 6.74e+01 2.05 1.63e+01

Table 2
Error norms of 1-D tests withb = 0, ν = 1, c = 1 and TGA (α = 0.58).

Method ‖E(10)‖1 O1 ‖E(20)‖1 O1 ‖E(40)‖1 O1 ‖E(80)‖1 O1 ‖E(160)‖1
GC1E 3.95e+03 2.35 7.75e+02 2.11 1.79e+02 -37.58 3.68e+13 -69.44 2.96e+34

GC2E 3.95e+03 2.35 7.75e+02 2.20 1.69e+02 2.10 3.94e+01 2.05 9.49e+00

EJA 4.15e+03 2.38 7.95e+02 2.21 1.72e+02 2.11 3.97e+01 2.06 9.54e+00

Method ‖E(10)‖∞ O∞ ‖E(20)‖∞ O∞ ‖E(40)‖∞ O∞ ‖E(80)‖∞ O∞ ‖E(160)‖∞
GC1E 6.62e+03 2.34 1.31e+03 2.19 2.88e+02 -41.49 8.87e+14 -69.89 9.73e+35

GC2E 6.62e+03 2.34 1.31e+03 2.19 2.88e+02 2.10 6.73e+01 2.05 1.63e+01

EJA 6.69e+03 2.35 1.32e+03 2.19 2.89e+02 2.10 6.74e+01 2.05 1.63e+01

4.3 Accuracy and convergence : mid-range Reynolds numbers

We first show the existence of velocity jumps in Fig. 7, where the final solutions of
EJA for a 2-D slope test and a 2-D sphere test are plotted as surfaces over 40× 40
grids. The lighting clearly illustrates the derivative jumps of the solution at the
solid-fluid interface.

For the 1-D tests, Table 3 shows the results for the regular boundary caseb = 0
with ν = 10−3. It is clear that GC1 is much less accurate than GC2, which is in
turn less accurate than EJA. In the case of GC1, the grid size has to be reduced to
the finest in order for it to reach second-order convergence.The convergence rate
of GC2 also varies with the grid size and is close to 3 on the twofinest grids. In
contrast, the convergence rate of EJA is steadily at 2 regardless of the grid size.
These observations confirm the remarks (I) and (V) in Section2.

In Table 4, the error norms of the same test cases of Table 3 arere-evaluated within
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Table 3
Error norms of 1-D tests withb = 0, ν = 10−3, c = 0.01

Method ‖E(10)‖1 O1 ‖E(20)‖1 O1 ‖E(40)‖1 O1 ‖E(80)‖1 O1 ‖E(160)‖1
GC1 8.33e-06 1.34 3.29e-06 1.75 9.78e-07 1.95 2.53e-07 1.99 6.37e-08

GC2 1.25e-06 2.21 2.69e-07 2.53 4.67e-08 2.72 7.06e-09 2.60 1.16e-09

EJA 1.41e-07 1.99 3.56e-08 1.98 9.01e-09 2.00 2.25e-09 2.00 5.62e-10

Method ‖E(10)‖∞ O∞ ‖E(20)‖∞ O∞ ‖E(40)‖∞ O∞ ‖E(80)‖∞ O∞ ‖E(160)‖∞
GC1 7.85e-05 0.54 5.40e-05 1.31 2.18e-05 1.78 6.33e-06 1.91 1.69e-06

GC2 1.06e-05 1.44 3.90e-06 2.18 8.58e-07 2.82 1.22e-07 2.92 1.60e-08

EJA 1.85e-07 1.98 4.70e-08 2.00 1.18e-08 2.00 2.94e-09 2.00 7.35e-10

Table 4
Error norms of 1-D tests near the interface (y ∈ [0, 0.2]) with b = 0, ν = 10−3, c = 0.01

Method ‖E(10)‖1 O1 ‖E(20)‖1 O1 ‖E(40)‖1 O1 ‖E(80)‖1 O1 ‖E(160)‖1
GC1 4.11e-05 1.33 1.63e-05 1.75 4.85e-06 1.95 1.25e-06 1.99 3.16e-07

GC2 5.59e-06 2.23 1.19e-06 2.61 1.94e-07 2.92 2.57e-08 2.91 3.40e-09

EJA 7.56e-08 1.84 2.11e-08 1.79 6.12e-09 1.94 1.60e-09 1.98 4.04e-10

Method ‖E(10)‖∞ O∞ ‖E(20)‖∞ O∞ ‖E(40)‖∞ O∞ ‖E(80)‖∞ O∞ ‖E(160)‖∞
GC1 7.85e-05 0.54 5.40e-05 1.31 2.18e-05 1.78 6.33e-06 1.91 1.69e-06

GC2 1.06e-05 1.44 3.90e-06 2.18 8.58e-07 2.82 1.22e-07 2.92 1.60e-08

EJA 1.13e-07 1.89 3.05e-08 1.99 7.69e-09 1.99 1.93e-09 2.00 4.83e-10

Table 5
Error norms of 1-D tests withb = 0.2, ν = 10−3, c = 0.01

Method ‖E(10)‖1 O1 ‖E(20)‖1 O1 ‖E(40)‖1 O1 ‖E(80)‖1 O1 ‖E(160)‖1
GC1 2.08e-05 1.29 8.47e-06 1.71 2.58e-06 1.99 6.51e-07 2.03 1.60e-07

GC2 1.67e-06 2.23 3.56e-07 2.63 5.75e-08 2.85 8.00e-09 2.67 1.25e-09

EJA 1.43e-07 2.01 3.55e-08 1.99 8.96e-09 2.00 2.25e-09 2.00 5.61e-10

Method ‖E(10)‖∞ O∞ ‖E(20)‖∞ O∞ ‖E(40)‖∞ O∞ ‖E(80)‖∞ O∞ ‖E(160)‖∞
GC1 1.97e-04 0.49 1.40e-04 1.27 5.80e-05 1.84 1.62e-05 1.94 4.21e-06

GC2 1.46e-05 1.45 5.35e-06 2.30 1.09e-06 2.93 1.42e-07 2.96 1.83e-08

EJA 1.83e-07 1.97 4.67e-08 1.99 1.17e-08 2.00 2.94e-09 2.00 7.35e-10
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Table 6
Derivative error norms of 2-D slope tests withν = 10−3, c = 0.01.

Method ‖Eτ(10)‖1 O1 ‖Eτ(20)‖1 O1 ‖Eτ(40)‖1 O1 ‖Eτ(80)‖1 O1 ‖Eτ(160)‖1
GC1 5.93e-03 0.87 3.25e-03 0.57 2.18e-03 1.00 1.09e-03 1.09 5.12e-04

GC2 2.06e-03 1.96 5.29e-04 2.05 1.28e-04 2.07 3.05e-05 2.02 7.54e-06

EJA 2.02e-03 2.08 4.79e-04 2.01 1.19e-04 2.05 2.88e-05 2.00 7.20e-06

Method ‖Eτ(10)‖∞ O∞ ‖Eτ(20)‖∞ O∞ ‖Eτ(40)‖∞ O∞ ‖Eτ(80)‖∞ O∞ ‖Eτ(160)‖∞
GC1 1.24e-02 0.70 7.67e-03 0.54 5.26e-03 0.96 2.70e-03 1.11 1.25e-03

GC2 2.71e-03 1.81 7.73e-04 2.09 1.81e-04 1.85 5.03e-05 2.08 1.19e-05

EJA 2.69e-03 2.06 6.45e-04 2.03 1.58e-04 2.03 3.88e-05 2.00 9.69e-06

Table 7
Derivative error norms of 2-D sphere tests withν = 10−3, c = 0.01.

Method ‖Eτ(10)‖1 O1 ‖Eτ(20)‖1 O1 ‖Eτ(40)‖1 O1 ‖Eτ(80)‖1 O1 ‖Eτ(160)‖1
GC1 1.13e-02 -1.03 2.32e-02 1.67 7.28e-03 0.60 4.80e-03 0.98 2.43e-03

GC2 2.01e-02 2.00 5.01e-03 2.30 1.02e-03 2.32 2.04e-04 2.18 4.49e-05

EJA 1.50e-02 2.26 3.15e-03 2.15 7.11e-04 2.10 1.65e-04 2.02 4.06e-05

Method ‖Eτ(10)‖∞ O∞ ‖Eτ(20)‖∞ O∞ ‖Eτ(40)‖∞ O∞ ‖Eτ(80)‖∞ O∞ ‖Eτ(160)‖∞
GC1 3.95e-02 -0.09 4.19e-02 0.74 2.52e-02 0.39 1.92e-02 1.03 9.40e-03

GC2 2.76e-02 1.97 7.04e-03 2.24 1.49e-03 2.15 3.36e-04 2.05 8.11e-05

EJA 1.80e-02 2.19 3.97e-03 2.09 9.34e-04 2.06 2.23e-04 2.04 5.42e-05

Table 8
Derivative error norms of 3-D sphere tests withν = 10−3, c = 0.01.

Method ‖Eτ(8)‖1 O1 ‖Eτ(16)‖1 O1 ‖Eτ(32)‖1
GC1 3.07e-02 0.32 2.45e-02 0.57 1.65e-02

GC2 3.20e-02 1.98 8.09e-03 2.29 1.65e-03

EJA 2.62e-02 2.36 5.09e-03 2.19 1.11e-03

Method ‖Eτ(8)‖∞ O∞ ‖Eτ(16)‖∞ O∞ ‖Eτ(32)‖∞
GC1 5.59e-02 -0.48 7.81e-02 -0.20 8.95e-02

GC2 5.04e-02 1.81 1.44e-02 2.26 3.00e-03

EJA 3.51e-02 2.21 7.61e-03 2.10 1.77e-03
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(a) A 2-D slope test.

(b) A 2-D sphere test.

Fig. 7. Surface plots of the final solutionu(x, te) of EJA on 40× 40 grids.ν = 10−3. The
parallel lighting shows the jump ofu(x, t2) at the solid-fluid interface.

a distance to the solid-fluid interface instead of over the whole domain. Comparing
Table 4 to Table 3, it is clear thatthe maximum error of GC1 and GC2 always
happens near the interfacebecause‖E‖∞ remains the same for GC1 and GC2 and
the averaged errors of GC1 and GC2 near the interface are roughly five times as
large as those over the whole domain. This is due to the fact that within each time
step, GC1 and GC2 commit errors ofO(1) andO(h), respectively, near the interface,
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as shown in (6). Apart from deteriorating the accuracy away from the boundary
by perturbing the linear systems in (44), these errors remain near the solid-fluid
interface. Therefore, if the flow near the solid-fluid interface is of interests, EJA is
an much better choice than GC1 and GC2.

Table 5 shows the results for an irregular boundary case ofb = 0.2 with otherwise
the same configuration as Table 3. Comparing Table 3 to Table 5, the errors of EJA
remain almost the same while those of GC1 roughly triple whenthe solid-fluid
interface changes from regular to irregular. Thus, EJA is more independent to the
location of the interface than GC1 and GC2.

Let Eτ denote the error of the sum of the derivatives
∑D−1

d=0
∂u
∂xd

, evaluated from the
solution ofu. Table 6, Table 7, and Table 8 listEτ for the 2-D slope tests, the 2-
D sphere tests and the 3-D sphere tests, respectively. In allthree tests, GC2 has
roughly the same accuracy with EJA while GC1 is much less accurate, especially
in the 3-D sphere tests.

Aside from a better accuracy, EJA is a better choice from an efficiency viewpoint,
since EJA prevents local errors near the boundary from beingdistributed to the
whole domain, i.e., a lower-dimension operation helps to reduce errors in a higher-
dimension space.

4.4 The accuracy and convergence of GCA depend on viscosity

For practical applications, it is necessary to examine the error dependence on vis-
cosity, or equivalently, the Reynolds number defined in (51). To this end, the error
norms of Re= 1, 103, 106 are shown in Table 9, Table 10, and Table 11 for the 2-D
slope tests; Table 12, Table 13, and Table 14 for the 2-D sphere tests; Table 15,
Table 16, Table 17 for the 3-D sphere tests. The error ratios as defined in (46) are
plotted in Fig. 8 and in Fig. 9 for the 2-D slope tests. Qualitatively the same as Fig.
8 and Fig. 9 are the error ratio plots of the 1-D tests and the 2-D sphere tests, which
are not repeated here. Since EJA is always second-order accurate independent of
grid size and viscosity, a constantRGCk implies second-order convergence. Simi-
larly, an increasing curve ofRGCk implies convergences worse than second order.

In Fig. 8, all the error ratios increase as Re increases, except that in Fig. 8 (c) the
1-norm error ratio of GC2 to EJA appears to have an asymptote of roughly 6.5 (this
asymptote is about 13 for the 1-D tests) regardless of the grid size. This implies that
GC2 is second-order accurate in the 1-norm sense, which is confirmed in Table 11,
Table 14, and Table 17. It is also speculated that the value ofthe asymptote depends
on the flow type. The most interesting cases are those of Re= 104, 105, 106: in Fig.
8 (a), (b), & (d), where error ratios of GCA to EJA increases asthe grid size is
reduced. Thus, within the range of shown grid sizes, the convergence rates of GC2
in ∞-norm and those of GC1 in both 1-norm and∞-norm are all less than 2. In
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Table 9
Error norms of 2-D slope tests withν = 1, c = 0.01.

Method ‖E(10)‖1 O1 ‖E(20)‖1 O1 ‖E(40)‖1 O1 ‖E(80)‖1 O1 ‖E(160)‖1
GC1 1.59e-04 3.32 1.59e-05 2.32 3.17e-06 2.40 5.99e-07 2.36 1.17e-07

GC2 2.91e-05 2.73 4.37e-06 2.55 7.48e-07 2.33 1.49e-07 2.19 3.26e-08

EJA 9.45e-06 2.18 2.08e-06 2.10 4.85e-07 2.06 1.17e-07 2.03 2.86e-08

Method ‖E(10)‖∞ O∞ ‖E(20)‖∞ O∞ ‖E(40)‖∞ O∞ ‖E(80)‖∞ O∞ ‖E(160)‖∞
GC1 1.32e-03 2.52 2.30e-04 1.50 8.15e-05 1.90 2.19e-05 2.15 4.95e-06

GC2 7.37e-05 2.76 1.09e-05 3.03 1.33e-06 2.25 2.79e-07 2.12 6.41e-08

EJA 1.74e-05 2.09 4.08e-06 2.05 9.83e-07 2.03 2.41e-07 2.01 5.96e-08

Table 10
Error norms of 2-D slope tests withν = 10−3, c = 0.01.

Method ‖E(10)‖1 O1 ‖E(20)‖1 O1 ‖E(40)‖1 O1 ‖E(80)‖1 O1 ‖E(160)‖1
GC1 2.56e-05 2.21 5.53e-06 2.44 1.02e-06 2.78 1.48e-07 2.67 2.34e-08

GC2 1.45e-06 2.27 3.02e-07 2.73 4.55e-08 2.61 7.46e-09 2.46 1.35e-09

EJA 2.26e-07 2.01 5.61e-08 2.01 1.40e-08 2.02 3.45e-09 2.01 8.54e-10

Method ‖E(10)‖∞ O∞ ‖E(20)‖∞ O∞ ‖E(40)‖∞ O∞ ‖E(80)‖∞ O∞ ‖E(160)‖∞
GC1 4.97e-04 1.38 1.91e-04 1.33 7.62e-05 1.83 2.15e-05 2.13 4.92e-06

GC2 2.03e-05 1.71 6.22e-06 2.56 1.06e-06 2.79 1.53e-07 2.85 2.11e-08

EJA 2.97e-07 1.98 7.54e-08 2.00 1.89e-08 2.00 4.71e-09 2.00 1.18e-09

Table 11
Error norms of 2-D slope tests withν = 10−6, c = 0.01.

Method ‖E(10)‖1 O1 ‖E(20)‖1 O1 ‖E(40)‖1 O1 ‖E(80)‖1 O1 ‖E(160)‖1
GC1 3.34e-08 1.47 1.21e-08 0.91 6.45e-09 1.15 2.89e-09 1.14 1.31e-09

GC2 1.59e-09 1.91 4.21e-10 2.12 9.70e-11 1.97 2.47e-11 2.01 6.11e-12

EJA 2.39e-10 1.99 6.02e-11 2.00 1.50e-11 2.00 3.75e-12 1.98 9.49e-13

Method ‖E(10)‖∞ O∞ ‖E(20)‖∞ O∞ ‖E(40)‖∞ O∞ ‖E(80)‖∞ O∞ ‖E(160)‖∞
GC1 6.74e-07 0.50 4.75e-07 -0.49 6.69e-07 -0.07 7.03e-07 0.21 6.07e-07

GC2 2.46e-08 0.78 1.43e-08 1.02 7.08e-09 0.98 3.58e-09 1.01 1.78e-09

EJA 3.19e-10 1.72 9.69e-11 2.11 2.24e-11 2.13 5.12e-12 1.92 1.35e-12
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Table 12
Error norms of 2-D sphere tests withν = 1, c = 0.01.

Method ‖E(10)‖1 O1 ‖E(20)‖1 O1 ‖E(40)‖1 O1 ‖E(80)‖1 O1 ‖E(160)‖1
GC1 8.44e-04 2.50 1.49e-04 1.85 4.13e-05 2.59 6.88e-06 2.15 1.55e-06

GC2 9.44e-04 2.61 1.55e-04 2.34 3.07e-05 2.16 6.89e-06 2.09 1.62e-06

EJA 5.64e-04 2.24 1.20e-04 2.14 2.73e-05 2.08 6.44e-06 2.04 1.57e-06

Method ‖E(10)‖∞ O∞ ‖E(20)‖∞ O∞ ‖E(40)‖∞ O∞ ‖E(80)‖∞ O∞ ‖E(160)‖∞
GC1 6.22e-03 1.95 1.62e-03 2.49 2.88e-04 1.37 1.12e-04 1.81 3.18e-05

GC2 1.43e-03 2.34 2.83e-04 2.18 6.25e-05 2.07 1.48e-05 2.04 3.60e-06

EJA 1.15e-03 2.17 2.55e-04 2.09 5.99e-05 2.05 1.45e-05 2.02 3.56e-06

Table 13
Error norms of 2-D sphere tests withν = 10−3, c = 0.01.

Method ‖E(10)‖1 O1 ‖E(20)‖1 O1 ‖E(40)‖1 O1 ‖E(80)‖1 O1 ‖E(160)‖1
GC1 1.49e-04 1.54 5.14e-05 2.75 7.61e-06 1.68 2.38e-06 2.27 4.93e-07

GC2 5.25e-05 2.37 1.02e-05 2.46 1.85e-06 2.24 3.90e-07 2.18 8.62e-08

EJA 2.08e-05 1.99 5.23e-06 2.02 1.29e-06 2.03 3.14e-07 2.02 7.75e-08

Method ‖E(10)‖∞ O∞ ‖E(20)‖∞ O∞ ‖E(40)‖∞ O∞ ‖E(80)‖∞ O∞ ‖E(160)‖∞
GC1 2.11e-03 0.72 1.28e-03 2.16 2.87e-04 1.36 1.12e-04 1.81 3.18e-05

GC2 3.68e-04 2.02 9.07e-05 2.74 1.36e-05 2.72 2.06e-06 2.93 2.71e-07

EJA 5.44e-05 2.04 1.32e-05 1.99 3.33e-06 2.02 8.23e-07 2.01 2.04e-07

Table 14
Error norms of 2-D sphere tests withν = 10−6, c = 0.01.

Method ‖E(10)‖1 O1 ‖E(20)‖1 O1 ‖E(40)‖1 O1 ‖E(80)‖1 O1 ‖E(160)‖1
GC1 1.76e-07 0.94 9.21e-08 1.62 3.01e-08 0.60 1.98e-08 1.00 9.89e-09

GC2 5.60e-08 2.16 1.25e-08 2.21 2.70e-09 1.84 7.53e-10 2.05 1.82e-10

EJA 2.22e-08 1.97 5.65e-09 2.00 1.41e-09 2.00 3.54e-10 2.00 8.87e-11

Method ‖E(10)‖∞ O∞ ‖E(20)‖∞ O∞ ‖E(40)‖∞ O∞ ‖E(80)‖∞ O∞ ‖E(160)‖∞
GC1 2.61e-06 -0.01 2.63e-06 0.28 2.17e-06 -0.40 2.86e-06 0.01 2.84e-06

GC2 4.50e-07 1.29 1.85e-07 1.12 8.47e-08 0.72 5.13e-08 1.03 2.50e-08

EJA 6.08e-08 1.86 1.68e-08 1.93 4.41e-09 1.97 1.13e-09 2.01 2.80e-10
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Table 15
Error norms of 3-D sphere tests withν = 1, c = 0.01.

Method ‖E(8)‖1 O1 ‖E(16)‖1 O1 ‖E(32)‖1
GC1 2.17e-03 2.73 3.27e-04 2.33 6.52e-05

GC2 1.78e-03 2.45 3.25e-04 2.27 6.74e-05

EJA 1.53e-03 2.36 2.98e-04 2.21 6.46e-05

Method ‖E(8)‖∞ O∞ ‖E(16)‖∞ O∞ ‖E(32)‖∞
GC1 5.33e-03 1.33 2.11e-03 1.69 6.55e-04

GC2 3.58e-03 2.22 7.70e-04 2.13 1.76e-04

EJA 3.47e-03 2.20 7.54e-04 2.11 1.75e-04

Table 16
Error norms of 3-D sphere tests withν = 10−3, c = 0.01.

Method ‖E(8)‖1 O1 ‖E(16)‖1 O1 ‖E(32)‖1
GC1 1.44e-04 1.91 3.85e-05 2.18 8.52e-06

GC2 7.41e-05 2.11 1.72e-05 2.19 3.76e-06

EJA 5.55e-05 2.03 1.36e-05 2.05 3.29e-06

Method ‖E(8)‖∞ O∞ ‖E(16)‖∞ O∞ ‖E(32)‖∞
GC1 1.68e-03 0.01 1.66e-03 1.35 6.53e-04

GC2 4.67e-04 1.68 1.46e-04 2.60 2.39e-05

EJA 2.07e-04 2.11 4.78e-05 1.92 1.26e-05

Table 17
Error norms of 3-D sphere tests withν = 10−6, c = 0.01.

Method ‖E(8)‖1 O1 ‖E(16)‖1 O1 ‖E(32)‖1
GC1 1.67e-07 1.44 6.17e-08 1.13 2.83e-08

GC2 7.74e-08 2.01 1.93e-08 2.02 4.76e-09

EJA 5.75e-08 1.99 1.45e-08 2.00 3.63e-09

Method ‖E(8)‖∞ O∞ ‖E(16)‖∞ O∞ ‖E(32)‖∞
GC1 2.27e-06 -0.62 3.48e-06 -0.23 4.08e-06

GC2 5.62e-07 0.89 3.03e-07 0.91 1.61e-07

EJA 2.31e-07 1.77 6.76e-08 1.88 1.83e-08
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Fig. 8. 2-D slope tests error ratios of GC1 and GC2 to EJA with respect to grid resolution
and the Reynolds number in (51). The horizontal and verticalaxis are log10 Re andRGCk

as defined in (46) respectively. ‘+’, ‘ ×’, ‘ ⋄’, ‘ ◦’, ‘*’ represent N = 10, 20, 40, 80, 160,
respectively. An increasing curve implies convergence worse than second-order. The value
of a vertical coordinate is the order-of-magnitude by whichthe GCA is less accurate than
EJA.

Table 11, Table 14, and Table 17, GC2 shows first-order convergence in the∞-
norm while the convergence of GC1 in the∞-norm is oscillating around 0. This
confirms remark (II) of Section 2. It can also be deduced that all the grid sizes used
in Tables 9 - 17 and Fig. 8 are bigger thanhcrit . Comparing Table 9 to Tables 10 &
11, or Table 12 to Tables 13 & 14, or Table 15 to Tables 16 & 17, the dependence
of accuracy and the convergence rate on viscosity is obviousfor both GC1 and
GC2. This behavior of GCA is also confirmed in Fig. 9 in that theslope of the
curves increases as Reynolds number is increased. These exemplify remark (III) of
Section 2.

To examine the dependence ofhcrit on viscosity, we perform more calculations on
finer grids and present the results in Fig. 9, whereRGCk is plotted against the grid
size. According to the analysis in Section 2,RGCk should first increase and then, at
a critical grid sizehcrit , decrease or remain a constant thereafter.
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(f) Re= 106

Fig. 9. 2D slope test convergence rates of GC1 and GC2 with respect to the Reynolds
number as defined in (51). The horizontal axis is log2

N
N0

with N0 = 10; the vertical axis

is RGCk as defined in (46). ‘+’, ‘ ⋄’, ‘*’, and ‘ ◦’ representRGC1
1 , RGC1

∞ , RGC2
1 , andRGC2

∞
respectively. An increasing curve implies convergence worse than second-order while a
decreasing curve implies convergence better than second-order. The value of a vertical
coordinate is the order-of-magnitude by which the GCA is less accurate than EJA.
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At low-Reynolds number in Fig. 9. (a) & (b), the grid size is fine enough so that
GC2 has the same accuracy of EJA and even GC1 has second-orderconvergence,
although its accuracy is less satisfactory by several order-of-magnitudes. Because
viscosity is big enough to damp out all the high frequency modes, most curves of
RGCk do not have an ascending part, even forRGC1

∞ that does have an ascending part,
the increase is small. For mid-range Reynold numbers, the ascending parts become
evident in Fig. 9. (c) & (d), which confirms thathcrit decreases as the Reynolds
number increases. In Fig. 9. (e) & (f), the curves have no descending parts, imply-
ing that even the smallest grid size124N0

is still bigger thanhcrit . Note that at this
resolution, the accuracy of EJA in the 1-D tests and the 2-D slope tests is already
close to machine precision for high Reynolds numbers.

Although GCAs can be second-order accurate or even better given small enough
grid sizes, their errors are much larger than that of EJA in a wide range of grid sizes.
This is particularly true for GC1. Furthermore, because of limited computational
resources,hcrit can be unrealistically small, depending on the particular type of the
viscous flow. As an example, forν = 10−6, second-order convergence rates are
impossible to show for the∞-norms of GC1 and GC2, given the length of the
mantissa of a double-precision floating number.

Aside from the analysis, an interpretation based on physical intuition can also ex-
plain Fig. 8, and Fig. 9: when the fluid phase is strongly diffusive (correspond-
ing to small Re), lower-dimensional perturbations can be effectively damped out.
However, when viscosity becomes smaller and smaller, the same perturbations will
cause larger and larger errors for the whole system. Worse, the errors are commit-
ted and accumulated within each time step.This time-accumulation of errors at
high Reynolds numbers is the most important reason that GC1 and GC2 should be
avoided for handling solid-fluid interfaces.This statement also holds for general
practical viscous flows because the advection terms in the Navier-Stokes equations
are usually treated explicitly and they correspond to the nonhomogeneous term
f (x, t) in (1).

5 Concluding Remarks

Although the error equations are the same for Poisson’s equation and the diffusion
equation, the solution error of the diffusion equation might accumulate to an unac-
ceptable degree overO(1/∆t) = O(1/h) time steps, especially when the truncation
error commited to the difference system at each time step is of a larger orde-of-
magnitude than that of the intended solution error. We have shown, theoretically
and numerically, that the truncation error of the diffusion equation has to beO(h2) to
achieve rigorous second order accuracy for the solution. Despite the wide usage of
the linear extrapolation of GC1 for regular or irregular boundaries (i.e.u−1 = −u0),
it has serious shortcomings when coupled to any method aiming for second-order
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accuracy. GC1 ignores all the jumps of velocity derivatives, whereasthese jumps
exist anyway regardless of the boundary being regular or not. The numerical re-
sults in this paper confirm that GC1 is far less than satisfactory even for regular
boundaries. For inviscid flows, GC1 generates first-order truncation error near the
boundary, thus a second-order method should still avoid using it.

We have proposed the explicit jump approximation method as amore accurate and
more stable way to handle solid-fluid interfaces for viscousflows. Although the re-
sulting linear system is not symmetric, it is strictly diagonally dominant. Currently,
EJA only applies to stationary boundaries; the generalization of EJA to moving
boundary problems will be reported in a future paper.

EJA finds the extrapolation locations by intersecting the solid-fluid interface to lines
parallel to coordinate axes. As such, accurate interface tracking is desirable, par-
ticularly when the solid-fluid interface is moving. The Polygonal Area Mapping
(PAM) method [26] represents material areas with piecewisepolygons and tracks
the interface by polygon-clipping algorithms from computational geometry. One
attractive advantage of PAM is its high accuracy, particularly for sharp corners and
singularity points; another is its rigorous second-order convergence [25]. These
make PAM the ideal candidate to be coupled with EJA for movingboundary prob-
lems.

PAM has already been coupled to a projection method to form a hybrid continuum-
particle model (HyPAM) [28] for incompressible free-surface flows. In this model,
a single-phase decomposition algorithm based on graph theory is used to decom-
pose the water phase into a continuum zone and a particle zone, where different
governing equations are applied. It is shown that the accuracy for practical free-
surface flows, such as dam-break generated bores and swash-zone hydrodynam-
ics [27], can be improved dramatically by replacing Volume-of-fluid methods with
PAM and by changing how the velocity field near the free surface is calculated.
A long term goal is to combine these three elements together to form an air-fluid-
solid model, which could be of much value for practical applications of free surface
flows and flow-structures interactions.
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Appendix

This appendix derives formulas for one-dimensional jump approximations. It is im-
portant to emphasize that the ‘+’ and ‘-’ superscripts in EJA represent the positive
and negative sides of the jump with respect to a coordinate, not with respect to the
two phases.

Referring to Fig. 1 (b), Taylor expansions atyB in the fluid phase result in a linear
system
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where the diagonal matrix is
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The case that the solid phase lies at the positive side of the fluid phase can be
derived similarly to reach a general result that do not change the forms of (52) and
(53):

J1,3
y =

[[
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,
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,
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]]T

B

= SHW3δuy +O(h3, h2, h)T, (54)

whereS= diag
(

s, 1, s
)

, s = 1 if the solid-fluid interface lies at the negative side of
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the fluid; otherwises = −1. The extrapolation vector is

δuy =
(

u j , u j+s, u j+2s

)T
− u(y+B). (55)

In the case when not enough data are available forW3, the extrapolation matrix is
reduced toW1 = 1 or

W2 =
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Applying (54) to (25) yields (28), whereS is canceled due to the selecting property
of (25).

References

[1] P. A. Berthelsen and O. M. Faltinsen. A local directionalghost cell approach for
incompressible viscous flow problems with irregular boundaries. J. Comput. Phys.,
227:4354–4397, 2008. doi:10.1016/j.jcp.2007.12.022.

[2] S. J. Farlow. Partial Differential Equations for Scientists and Engineers. Dover
Publications, 1993. ISBN-13: 978-0486676203.

[3] A. L. Fogelson and J. P. Keener. Immersed interface methods for Neumann and related
problems in two and three dimensions.SIAM J. Sci. Comput., 22(5):1630–1654, 2000.

[4] F. Gibou and R. Fedkiw. A fourth order accurate discretization for the Laplace and heat
equations on arbitrary domains, with applications to the Stefan problem.J. Comput.
Phys., 202:577–601, 2005. doi:10.1016/j.jcp.2004.07.018.

[5] K. Ito, Z. Li, and Y. Kyei. Higher-order, Cartesian grid based finite difference schemes
for elliptic equations on irregular domains.SIAM J. Sci. Comput., 27(1):346–367,
2005.

[6] H. Johansen and P. Colella. A Cartesian grid embedded boundary method for Poisson’s
equation on irregular domains.J. Comput. Phys., 147:60–85, 1998.

[7] J. D. Lawson and J. L. Morris. The extrapolation of first order methods for parabolic
partial differential equations. I.SIAM J. Numer. Anal., 15(6):1212–1224, 1978.

[8] D. V. Le, B. C. Khoo, and J. Peraire. An immersed interfacemethod for viscous
incompressible flows involving rigid and flexible boundaries. J. Comput. Phys.,
220:109–138, 2006. doi:10.1016/j.jcp.2006.05.004.

[9] L. Lee and R. J. Leveque. An immersed interface method
for incompressible Navier-Stokes equations.SIAM J. Sci. Comput., 25(3):832–856,
2003. doi:10.1137/S1064827502414060.

34



[10] R. J. Leveque and Z. Li. Immersed interface method for elliptic equations with
discontinuous coefficients and singular sources.SIAM J. on Numer. Anal., 31(4):1019–
1044, 1994.

[11] R. J. Leveque and Z. Li. Immersed interface methods for Stokes flow with elastic
boundaries or surface tension.SIAM J. on Sci. Comput., 18(3):709–735, 1997.

[12] Z. Li and M.-C. Lai. The immersed interface method for the Navier-
Stokes equations with singular forces.J. Comput. Phys., 171(2):822–42, 2001.
doi:10.1006/jcph.2001.6813.

[13] A. Mayo. The fast solution of Poisson’s and the biharmonic equations on irregular
regions.SIAM J. Numer. Anal., 21:285–299, 1984.

[14] P. McCorquodale, P. Colella, D. P. Grote, and J.-L. Vay.A node-centered local
refinement algorithm for Poisson’s equation in complex geometries.J. Comput. Phys.,
201:34–60, 2004. doi:10.1006/jcph.2004.04.022.

[15] P. McCorquodale, P. Colella, and H. Johansen. A Cartesian grid embedded boundary
method for the heat equation on irregular domains.J. Comput. Phys., 173:620–635,
2001. doi:10.1006/jcph.2001.6900.

[16] R. Mittal and G. Iaccarino. Immersed boundary methods.Annu. Rev. Fluid Mech.,
37:239–261, 2005. doi:10.1146/annurev.fluid.37.061903.175743.

[17] D. A. Swayne. Time-dependent boundary and interior forcing in locally one-
dimensional schemes.SIAM J. Sci. Stat. Comput., 8(5):755–767, 1987.

[18] Y.-H. Tseng and J. H. Ferziger. A ghost-cell immersed boundary method
for flow in complex geometry. J. Comput. Phys., 192:593–623, 2003.
doi:10.1016/j.jcp.2003.07.024.

[19] E. H. Twizell, A. B. Gumel, and M. A. Arigu. Second-order, L0-stable methods for the
heat equation with time-dependent boundary conditions.Advances in Computational
Mathematics, 6:333–352, 1996.

[20] H. S. Udaykumar, R. Mittal, and W. Shyy. Computation of solid-fluid phase fronts in
the sharp interface limit on fixed grids.J. Comput. Phys., 153:535–574, 1999.

[21] A. Wiegmann and K. P. Bube. The immersed interface method for nonlinear
differential equations with discontinuous coefficients and singular sources.SIAM J.
Numer. Anal., 35(1):177–200, 1998.

[22] A. Wiegmann and K. P. Bube. The explicit-jump immersed interface method: finite
difference methods for PDEs with piecewise smooth solutions.SIAM J. Numer. Anal.,
37(3):827–862, 2000.

[23] S. Xu and Z. J. Wang. An immersed interface method for simulating the
interaction of a fluid with moving boundaries.J. Comput. Phys., 216:454–493, 2006.
doi:10.1016/j.jcp.2005.12.016.

[24] S. Xu and Z. J. Wang. Systematic derivation of jump conditions for the immersed
interface method in three-dimensional flow simulation.SIAM J. Sci. Comput.,
27(6):1948–1980, 2006. doi:10.1137/040604960.

35



[25] Q. Zhang. On explicit interface tracking.SIAM J. Numer. Anal., revision under review,
2010.

[26] Q. Zhang and P. L.-F. Liu. A new interface tracking method: The
polygonal area mapping method.J. Comput. Phys., 227(8):4063–4088, 2008.
doi:10.1016/j.jcp.2007.12.014.

[27] Q. Zhang and P. L.-F. Liu. A numerical study of swash flowsgenerated by bores.
Coastal Eng., 55(12):1113–1134, 2008. doi:10.1016/j.coastaleng.2008.04.010.

[28] Q. Zhang and P. L.-F. Liu. HyPAM : A hybrid continuum-particle model for
incompressible free surface flows.J. Comput. Phys., 228(4):1312–1342, 2009.
doi:10.1016/j.jcp.2008.10.029.

[29] X. Zhong. A new high-order immersed interface method for solving elliptic equations
with imbedded interface of discontinuity.J. Comput. Phys., 225:1066–1099, 2007.
doi:10.1016/j.jcp.2007.01.017.

[30] Y. C. Zhou, S. Zhao, M. Feig, and G. W. Wei. High order matched interface and
boundary method for elliptic equations with discontinuouscoefficients and singular
sources.J. Comput. Phys., 213:1–30, 2006. doi:10.1016/j.jcp.2005.07.022.

36


